ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Q. Qi, X. F. Wang, L. Q. Shi, L. Zhang, B. Zhang, Y. F. Lu, A. Liu
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1483-1486
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12712
Articles are hosted by Taylor and Francis Online.
Helium atoms are introduced into Cu films at room temperature by direct current (DC) magnetron sputtering in a He/Ar mixed atmosphere. The doped helium atoms are distributed evenly in the film and the content can be easily controlled by changing the process parameters. The structure of Cu films with trapped helium was investigated by X-ray diffraction (XRD) technology. With increasing helium irradiation flux, the lattice spacing and width of diffraction peaks increased due to helium effects, corresponding to the increase of finite and infinite size defects in the film. The shape of thermal desorption spectrum (TDS) and the number of peaks strongly depended on the amount of helium introduced into Cu. With increase of helium content, helium release temperature decreases. At the same amount of helium, the peak temperature became higher with increase of heating rate and from this we can obtain a picture which could calculate the activation energy of helium desorption.