ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Samuel J. Zenobia, Lauren M. Garrison, Gerald L. Kulcinski
Fusion Science and Technology | Volume 60 | Number 1 | July 2011 | Pages 344-348
Materials Development & Plasma-Material Interactions | Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1) | doi.org/10.13182/FST11-A12377
Articles are hosted by Taylor and Francis Online.
Surface morphology changes of sub-micron tipped tungsten needles (W.N.) and an engineered fine-grain tungsten (FGW) were studied after implantation with He ions at reactor relevant conditions. Surface and subsurface pore formation was observed on all of the samples by using scanning electron microscopy (SEM) and focused ion beam (FIB) milling. Additionally, helium retention analysis was performed on the FGW and compared to several previously studied W materials.Three samples of FGW were irradiated with 30 keV 3He ions to 3×1017 He+/cm2 at 700 °C, 9×1017 He+/cm2 at 850 °C, and 1×1019 He+/cm2 at 1050 °C. SEM analysis revealed that the threshold for visible pore formation was below ~1018 He+/cm2. The sample irradiated to the highest fluence showed “coral-like” morphology on the surface, and FIB analysis showed that the sub-surface semi-porous layer extended almost one micron below the surface. The percentage of implanted helium retained in the samples ranged from 4.5-40%.Two W.N. were implanted with 100 keV 4He ions to conditions of 3×1018 He+/cm2 at 700 °C and 1.3x1019 He+/cm2 at 1000 °C. Extensive pore formation was observed on both specimens. FIB analysis revealed that a sub-surface semi-porous layer developed after ion implantation that extended ~300 nm in the W.N. implanted to the lower dose, and over 1500 nm in the needle implanted to the higher dose. This second needle also exhibited a drastic morphology change, which appears to be a result of the unraveling of the grains at the tip.