ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Yoshinori Kawamura, Mikio Enoeda, R. Scott Willms, Peter M. Zielinski, Richard H. Wilhelm, Masataka Nishi
Fusion Science and Technology | Volume 37 | Number 1 | January 2000 | Pages 54-61
Technical Paper | doi.org/10.13182/FST00-A121
Articles are hosted by Taylor and Francis Online.
The cryosorption method is useful for extracting hydrogen isotopes from a helium gas stream with a small amount of hydrogen isotopes. Therefore, in fusion reactors, this method is expected to be applied for the helium glow discharge exhaust gas processing system and the blanket tritium recovery system. To design these systems, adsorption isotherms for each hydrogen isotope are needed, making it possible to estimate the amount of adsorption in a wide pressure range. The amount of tritium adsorption on molecular sieve 5A, molecular sieve 4A, and activated carbon, which are potential adsorbents in the cryosorption bed, at liquid nitrogen temperature were quantified using the volumetric method. It was found that adsorption isotherms of tritium were also expressed with the two-site Langmuir model and that the obtained isotherms were close to the reported isotherms, the Langmuir coefficients for which were estimated using a reduced mass of hydrogen isotopes.