ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
ANS sends waste policy recommendations to DOE
The American Nuclear Society has sent a letter to Energy Secretary Chris Wright with a set of recommendations for the Department of Energy to take to establish an effective national program to manage the storage, reprocessing, and final disposal of U.S. commercial used nuclear fuel.
M. A. Mahdavi, S. L. Allen, M. E. Fenstermacher, R. Maingi, M. J. Schaffer, R. D. Stambaugh, M. R. Wade
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1072-1082
Technical Paper | DIII-D Tokamak - Plasma Heat and Particle Exhaust | doi.org/10.13182/FST05-A1061
Articles are hosted by Taylor and Francis Online.
The pioneering research on the Doublet-III (DIII) tokamak and its upgrade the DIII-D has contributed significantly to understanding of the physics of divertor plasmas and the development of the modern poloidal divertor. The earliest experimental investigations of the "class of open divertors" were carried out on DIII and DIII-D tokamaks. Divertor advances on these devices include the discoveries of the "high-recycling regime" and divertor impurity enrichment via induced scrape-off-layer flow. Density control was achieved, and high-confinement modes were discovered with the aid of an innovative in-vessel cryopump. In this paper, we present a review of research and development on the DIII and DIII-D tokamaks that has contributed to the development of the modern poloidal divertor, emphasizing the aspects that are of importance to the next-generation tokamak devices.