ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Sami Penttilä, Aki Toivonen, Liisa Heikinheimo, Radek Novotny
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 261-271
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Materials for Nuclear Systems | doi.org/10.13182/NT10-A9463
Articles are hosted by Taylor and Francis Online.
The High Performance Light Water Reactor (HPLWR) design is one of the concepts chosen for Generation IV reactors; however, the material requirements for HPLWR offer challenges because of the extreme operating temperatures and pressures. Consequently, general corrosion rates were studied in water at 300 to 650°C at supercritical pressure using weight gain measurements. Oxide thicknesses were determined from cross-section samples. The compositions of the oxide layers were analyzed using scanning electron microscopy in conjuction with energy dispersive spectroscopy. The surface layers of selected samples were analyzed also by X-ray diffraction. The test matrix included ten materials from four alloy classes: ferritic/martensitic steels, oxide dispersion strengthened (ODS) steels, austenitic stainless steels, and nickel-base alloys. A high oxidation resistance was seen in Ni-base alloy 625, austenitic stainless steels with high Cr content (>18 wt% Cr), and an ODS steel containing 20% Cr at all applied test temperatures (300 to 650°C). The oxidation rates of austenitic stainless steels with lower Cr content, 15 to 18%, increase considerably at temperatures >500°C. The oxidation rates of 9% Cr ODS steels were moderate or high at all temperatures. Ferritic/martensitic steels showed high oxidation rates at all temperatures.