ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Pavlo Ivanusa, Philip Jensen, Caitlin A. Condon, Amoret L. Bunn
Nuclear Technology | Volume 208 | Number 3 | March 2022 | Pages 575-585
Technical Note | doi.org/10.1080/00295450.2021.1932174
Articles are hosted by Taylor and Francis Online.
The SCALE code system was used to model, deplete, and compare several different tri-structural isotropic (TRISO)–fueled reactor designs: a helium-cooled prismatic reactor, a helium-cooled pebble-bed reactor (PBR), and a fluoride-lithium-beryllium (FLIBE) molten-salt-cooled PBR. The purpose of this comparison was to understand how differences in the reactor designs affect the radioactivity of the fuel after discharge and whether those differences are significant. First, the various reactor designs were built and depleted in the TRITON module for each design and fuel enrichment. Then, the TRITON outputs were used to create burnup-dependent reactor libraries. These libraries were then used by ORIGEN to determine the activities of discharged fuel for each reactor, which were compared to generic Westinghouse 17 × 17 fuel.
Overall, the results showed that short-term activities are dominated by reactors with higher operating powers, and the reactor type, initial fuel enrichment, and maximum burnup are of only secondary importance. Although this analysis only focuses on activities in Becquerels, these dependencies are consistent with the expected behavior of decay heat. However, analysis of long-term time periods post irradiation shows that the reactor type and maximum burnup have strong impacts on the activities; initial fuel enrichment has a secondary impact while operating power is inconsequential.
These results would be useful for analyses, such as dose assessment and modeling in postrelease scenarios, normal fuel handling operations, and spent fuel transport, storage, and disposal. Of particular interest, the results in this technical note show that analyses that focus on spent nuclear fuel of advanced reactors need to consider each parameter carefully. Unsurprisingly, if the correct operating power is not used in short-term analyses, the results will not be correct. Perhaps unexpectedly, however, if the correct reactor type is not used, then the long-term results will also be incorrect, especially for areas such as permanent disposal. Even though this technical note focuses on the total activity of nuclear fuel, it provides initial results on the effects of various input parameters and also provides a framework to extend the work into other analyses of spent fuel from advanced reactors, especially those employing TRISO fuel.