ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Phillip M. Gorman, Jasmina L. Vujic, Ehud Greenspan
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 282-294
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-106
Articles are hosted by Taylor and Francis Online.
This study searches for the optimal fuel assembly design for the RBWR-Th core, which is a reduced-moderation boiling water reactor that is fuel-self-sustaining. Except for the initial fuel loading, it is charged with only fertile fuel and discharges only fission products, recycling all actinides. The RBWR-Th is a variant of the RBWR-AC core proposed by Hitachi, which arranges its fuel in a hexagonal tight lattice, has a high outlet void fraction, axially segregates seed and blanket regions, and fits within the advanced boiling water reactor (ABWR) pressure vessel. The RBWR-Th shares these characteristics but replaces depleted uranium (DU) with thoria as the primary fertile fuel, eliminates the internal blanket while elongating the seed region, and eliminates absorbers from the axial reflectors.
The sensitivity of important RBWR-Th core performance parameters to change in each one of a dozen design variables was established. These sensitivities provide useful insight and guidance to search for the optimal core design. The design variables of the sensitivity studies include the length of the seed and blanket zones, fuel rod diameter, lattice pitch, number of pins per assembly, concentration distribution of the recycled transfertile (transuranium + transthorium) isotopes in the seed, amount of DU in the seed makeup, coolant mass flow rate, and simulated depletion cycle length. The performance of the RBWR-Th core was found to be highly sensitive to the pitch-to-diameter ratio and to modeling assumptions. Using the conservative modeling assumptions, it was not possible to get the full ABWR power level without exceeding the pressure drop constraint.