ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
Roberto Ponciroli, Stefano Passerini, Richard B. Vilim
Nuclear Technology | Volume 191 | Number 2 | August 2015 | Pages 151-166
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-68
Articles are hosted by Taylor and Francis Online.
The recent interest in the Small Modular Reactor (SMR) for its potential increased economic competitiveness has focused attention in part on reducing operational costs to offset those plant costs that do not benefit from the economies of scale of large traditional units. Plant operation and maintenance economics are significantly driven by plant availability, which can be enhanced by means of innovative control strategies by avoiding unnecessary plant or unit trips. In this context, an effective strategy for achieving fast runback of a sodium-cooled SMR has been developed. In this work, after having defined and modeled a suitable control strategy by adopting the Petri nets formalism, a Model-based Predictive Control regulator has been developed in order to reduce as promptly as possible the power level, without scramming the reactor (fast runback) and possibly limiting the control rod contribution. Such flexibility could lead to significant savings in the operational costs of the reactor while also improving the system availability. The proposed procedure has been characterized by simulating the operational transients on both an oxide-fueled reactor and on a metal-fueled reactor, comparing the responses of the two different configurations and the respectively needed control rod contribution.