ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Li Wang, Yang Liu, Fuyu Zhao
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 33-44
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-15
Articles are hosted by Taylor and Francis Online.
This paper presents mathematical modeling of dynamic phenomena in large pressurized water reactors to study load-follow capability. One of the main reactor types in China's national nuclear development, CPR1000, uses a mode G control method, with G banks, N banks, R banks, and soluble boron to adjust reactor power changes and the axial power shape. In this paper, a new control mode is adopted that can follow the daily variation of power demand without changing the boron concentration. The control banks are regrouped to realize reactivity/temperature control by M banks and axial offset control by an AO bank. A two-node dynamic core model is constructed, taking into account the coupling coefficient and the mutual influence. The transient parameters are obtained by steady-state calculation of a single channel using the original design and operation parameters of CPR1000. Then, to adopt a control mode without soluble boron adjustment, the optimal control implementation is connected to the core simulation platform. Simulation results show that this optimal control policy can provide the capability for the CPR1000 to follow a daily load curve.