ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Greg J. Evans, Tutun Nugraha
Nuclear Technology | Volume 140 | Number 3 | December 2002 | Pages 315-327
Technical Paper | Radioisotopes | doi.org/10.13182/NT02-A3342
Articles are hosted by Taylor and Francis Online.
In this study, deposition of I2(g) on stainless steel tubing was investigated. The purpose was to quantify the rate of iodine deposition and desorption, as well as to elucidate the underlying mechanisms. The parameters included I2 gas phase concentration (10-7 to 10-11 M), relative humidity (<25 to 100%), tube surface temperature (23 to 90°C), and steel type (SS-304L and SS-316L). Gaseous I2 was found to deposit through both physical and chemical adsorption with deposition velocities ranging from 5 × 10-3 to 1.0 cm/s. At concentrations below 10-9 M, I2 rapidly deposited and was easily desorbed, consistent with physical adsorption. At concentrations above 10-9 M and low relative humidity (<25%), both adsorption and desorption were slow, consistent with a slow chemisorption process. At high relative humidity (>75%), rapid chemisorption with pitting corrosion occurred. Under some conditions, adsorption became inhibited resulting in an apparent maximum surface loading. At high iodine concentration, high relative humidity, and tube temperatures of 40 or 60°C, no such inhibition occurred, resulting in rapid and continuous iodine adsorption.