ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. T. Walker, S. Pickering
Nuclear Technology | Volume 42 | Number 2 | February 1979 | Pages 207-215
Technical Paper | Thorium Fuel Cycle in a Breeder Economy / Material | doi.org/10.13182/NT79-A32151
Articles are hosted by Taylor and Francis Online.
Analyses were performed on three mixed-oxide fuel pins. Two were irradiated in a fast flux, one in an epithermal-neutron flux. The compositions of the corrosion product phases in the fuel-cladding gaps of the different pins were similar. The phase was essentially a mixture of metal oxides, with chromium oxide the main constituent. Cesium chromate, if it formed at all, was present in only small amounts. Oxides of iron and nickel were not detected, which suggests that the oxygen potential in the gap did not exceed that for the FeCr2O4 formation. Metallic fragments in the phase resulted from mechanical interactions involving the phase and cladding grains whose boundaries had been weakened by intergranular corrosion. Chromium and manganese were lost from the inner cladding surface of all three pins. Titanium loss also occurred from the two pins clad with titanium-stabilized steel. A grain boundary phase depleted in chromium was present at the inner cladding surface of one of the pins irradiated in a fast flux. The phase that was associated with intergranular attack occurred in advance of the corrosion front.