ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
O. K. Tallent, J. C. Mailen
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 416-419
Technical Paper | Chemical Processing | doi.org/10.13182/NT77-A31806
Articles are hosted by Taylor and Francis Online.
The effects of Cu2+, Hg2+, Zn2+, La3+, Ce3+, Al3+, Pu4+, Th4+, and Zr4+ metal ion impurities on PuO2 dissolution in 8.0M HNO3—0.1M HF solution at 100°C have been investigated. Results based on 1.0 h of dissolution time show that such metal ions as Al3+, Pu4+, Th4+, and Zr4+, which form strong fluoride complexes, greatly decrease the dissolution rate, whereas such metal ions as Cu2+, Hg2+, Zn2+, La3+, and Ce3+, which form relatively weak fluoride complexes, have little or no effect. Fluoride ion activities in the dissolvents were calculated based on an empirical equation, K1aF + aF − 0.10 γs = 0, where K1, aF, and γs denote first metal ion fluoride complex stability constant, fluoride ion activity, and stoichiometric fluoride ion activity coefficient, respectively. The PuO2 dissolution rates were found to increase linearly with increase in the calculated fluoride ion activities.