ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
O. K. Tallent, J. C. Mailen
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 416-419
Technical Paper | Chemical Processing | doi.org/10.13182/NT77-A31806
Articles are hosted by Taylor and Francis Online.
The effects of Cu2+, Hg2+, Zn2+, La3+, Ce3+, Al3+, Pu4+, Th4+, and Zr4+ metal ion impurities on PuO2 dissolution in 8.0M HNO3—0.1M HF solution at 100°C have been investigated. Results based on 1.0 h of dissolution time show that such metal ions as Al3+, Pu4+, Th4+, and Zr4+, which form strong fluoride complexes, greatly decrease the dissolution rate, whereas such metal ions as Cu2+, Hg2+, Zn2+, La3+, and Ce3+, which form relatively weak fluoride complexes, have little or no effect. Fluoride ion activities in the dissolvents were calculated based on an empirical equation, K1aF + aF − 0.10 γs = 0, where K1, aF, and γs denote first metal ion fluoride complex stability constant, fluoride ion activity, and stoichiometric fluoride ion activity coefficient, respectively. The PuO2 dissolution rates were found to increase linearly with increase in the calculated fluoride ion activities.