ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
A focus on clean energy transition
Michigan-based consulting firm Ducker Carlisle has released a report that outlines projected developments and opportunities as well as potential problems in the global shift to cleaner power. Global Energy Transition Outlook predicts that market growth will happen not only in large-scale utility upgrades but also in small- and mid-scale electrification projects.
Ashish Sharma, Jeffrey Brown, Harindra J. S. Fernando
Nuclear Technology | Volume 174 | Number 1 | April 2011 | Pages 18-28
Technical Paper | One-Phase Fluid Flow | doi.org/10.13182/NT11-A11676
Articles are hosted by Taylor and Francis Online.
The flow distribution in a condensate demineralizer vessel of a nuclear power plant is studied using the computational fluid dynamics (CFD) approach. The model simulates the flow through the packed resin bed installed in the vessel as well as the exit of flow through the porous resin retention assembly at the bottom of the vessel. The computational model is subsequently revised to assess the impact of a proposed modification to the retention assembly to enhance drainage of the vessel and minimize unwanted resin separation during resin bed regeneration. The subject model has been developed using the ANSYS ICEM CFD meshing tool and the FLUENT 6.3 CFD software as well as associated postprocessing tools. Comparisons of flow patterns in the vessel resin beds prior to and with the modification demonstrate a sharp increase in the flow rate at the end walls of the vessel, thus resulting in accelerated depletion of resin in high-velocity areas and nonuniform consumption of resin inventory. The computational results are also compared with a theoretical analysis of the basic process.