ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
My Story: John L. Swanson—ANS member since 1978
. . . and in 2019, on his 90th birthday.
Swanson in 1951, the year of his college graduation . . .
My pre-college years were spent in a rural suburb of Tacoma, Wash. In 1947, I enrolled in Reed College, a small liberal arts school in Portland, Ore.; I majored in chemistry and graduated in 1951. While at Reed, I met and married a young lady with whom I would raise 3 children and spend the next 68 years of my life—almost all of them in Richland, Wash., where I still live.
I was fortunate to have a job each of my “college summers” that provided enough money to cover my college costs for the next year; I don’t think that is possible these days. My job was in the kitchen/dining hall of a salmon cannery in Alaska. Room and board were provided and the cannery was in an isolated location, so I could save almost every dollar of my salary.
Hwanyeal Yu, Jaeha Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1238-1254
Technical Paper | doi.org/10.1080/00295639.2019.1614367
Articles are hosted by Taylor and Francis Online.
The generalized equivalence theory (GET) plus superhomogenization (SPH) [GET Plus SPH (GPS)] method, which is a new leakage correction method for the pin-by-pin reactor analysis of light water reactors, has been applied to benchmarks for partial loading of mixed oxide (MOX) fuel in pressurized water reactor (PWR) cores. In the GPS method, the pinwise, cross section–dependent SPH factors are parameterized as a function of normalized leakage, i.e., current-to-flux ratio. As partially MOX-loaded PWRs usually have a stiff gradient of neutron flux on nodal interfaces, the original GPS functions for UO2 cores are slightly modified to take into account the strong spectral interaction. To determine the coefficients of the GPS function, several colorset models are considered to obtain fitting data. In this work, the two-dimensional method of characteristics–based DeCART2D code is used for both colorsets and reference core calculations. The GPS method is implemented in an in-house, pin-by-pin diffusion solver with the pinwise coarse mesh finite difference method. To evaluate the performance of the GPS method on partially MOX-loaded PWRs, the Korea Advanced Institute of Science and Technology (KAIST) 1A benchmark is analyzed in this work. In addition, various small and large variants of the KAIST 1A benchmark are also analyzed using the same GPS functions to demonstrate the general applicability of the predetermined GPS functions. Based on the comprehensive results of this work, it is concluded that the GPS method can clearly improve the accuracy of the conventional GET-based, two-step, pin-by-pin core analyses.