ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hwanyeal Yu, Jaeha Kim, Yonghee Kim
Nuclear Science and Engineering | Volume 193 | Number 11 | November 2019 | Pages 1238-1254
Technical Paper | doi.org/10.1080/00295639.2019.1614367
Articles are hosted by Taylor and Francis Online.
The generalized equivalence theory (GET) plus superhomogenization (SPH) [GET Plus SPH (GPS)] method, which is a new leakage correction method for the pin-by-pin reactor analysis of light water reactors, has been applied to benchmarks for partial loading of mixed oxide (MOX) fuel in pressurized water reactor (PWR) cores. In the GPS method, the pinwise, cross section–dependent SPH factors are parameterized as a function of normalized leakage, i.e., current-to-flux ratio. As partially MOX-loaded PWRs usually have a stiff gradient of neutron flux on nodal interfaces, the original GPS functions for UO2 cores are slightly modified to take into account the strong spectral interaction. To determine the coefficients of the GPS function, several colorset models are considered to obtain fitting data. In this work, the two-dimensional method of characteristics–based DeCART2D code is used for both colorsets and reference core calculations. The GPS method is implemented in an in-house, pin-by-pin diffusion solver with the pinwise coarse mesh finite difference method. To evaluate the performance of the GPS method on partially MOX-loaded PWRs, the Korea Advanced Institute of Science and Technology (KAIST) 1A benchmark is analyzed in this work. In addition, various small and large variants of the KAIST 1A benchmark are also analyzed using the same GPS functions to demonstrate the general applicability of the predetermined GPS functions. Based on the comprehensive results of this work, it is concluded that the GPS method can clearly improve the accuracy of the conventional GET-based, two-step, pin-by-pin core analyses.