ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
Ang Zhu, Yunlin Xu, Thomas Downar
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 23-37
Technical Paper | doi.org/10.1080/00295639.2016.1272387
Articles are hosted by Taylor and Francis Online.
Fourier analysis of the continuous infinite homogenous multigroup (MG) formulation is investigated in this paper for the time-dependent Boltzmann transport equation using discrete ordinates formulation. In addition, a continuous two-group (2G) and one-group (1G) Fourier analysis is performed to generate an analytical spectral radius and provide the basis for a theoretical analysis of the convergence. The discrete 1G formulation is then presented, and the theoretical analysis is found to predict the same spectral radius as the continuous 1G formulation. A typical pressurized water reactor pin cell problem with 47-group library is then homogenized with reflective boundary conditions, and the numerical spectral radius is calculated using the MPACT code. The theoretical predictions and the numerical results from the pin cell case agree very well and are found to have the following behavior: (1) The spectral radius is usually very close to unity for standard parameters for realistic transient application, (2) the spectral radius generally decreases as a function of inners per outer M, (3) the spectral radius generally decreases as a function of time-step size and then increases beyond unity for extremely small time steps, and (4) the spectral radius is almost constant as a function of the inserted reactivity. Good agreement is observed with the MG Fourier analysis. Finally, it is shown that the group sweeping coarse mesh finite difference method is theoretically and numerically very slow to converge the time-dependent neutron transport equation and that it is necessary to move the right-hand-side fission and transient source to the left-hand side and to solve the entire matrix form of the system.