ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
F. J. Arias
Nuclear Science and Engineering | Volume 178 | Number 2 | October 2014 | Pages 240-249
Technical Paper | doi.org/10.13182/NSE13-88
Articles are hosted by Taylor and Francis Online.
The phenomenology for a particular behavior of packed beds in heavy liquid metal (HLM) fast reactors during postaccident heat removal is proposed. Because of the similar densities of the fuel and the HLM, an inherent passive safety self-removal feedback mechanism due to buoyancy forces is developed, which propels the packed bed away from the wall, thus preventing temperatures that can jeopardize the vessel’s structural integrity and also reducing the recriticality potential by limiting the allowable bed depth. This identified mechanism will have somewhat compensatory tendencies in the self-leveling behavior of debris beds, which are crucial for sodium-cooled reactors, but unfortunately, it is not operative for HLMs because of the absence of boiling of the coolant. By means of a simplified geometrical model, a preliminary analysis of the potentiality of the phenomenon has been performed.