ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Nicolas Thiollière, Luca Zanini, Jean-Christophe David, Jost Eikenberg, Arnaud Guertin, Alexander Yu. Konobeyev, Sébastien Lemaire, Stefano Panebianco
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 178-187
Technical Paper | doi.org/10.13182/NSE10-53
Articles are hosted by Taylor and Francis Online.
The MEGAwatt PIlot Experiment (MEGAPIE) project was started in 2000 to design, build, and operate a liquid lead-bismuth eutectic (LBE) spallation neutron target at the power level of 1 MW. The target was irradiated for 4 months in 2006 at the Paul Scherrer Institute in Switzerland. Gas samples were extracted in various phases of operation and analyzed by spectroscopy, leading to the determination of the main radioactive isotopes released from the LBE. Comparison with calculations performed using several validated codes (MCNPX2.5.0/CINDER'90, FLUKA/ORIHET, and SNT) yields the ratio between simulated in-target isotope production rates and experimental amounts released at any given time. This work underlines the weak points of spallation models for some released isotopes. Also, results provide relevant information for safety and radioprotection in an accelerator-driven system and more particularly for the gas management in a spallation target dedicated to neutron production facilities.