ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Nicolas Thiollière, Luca Zanini, Jean-Christophe David, Jost Eikenberg, Arnaud Guertin, Alexander Yu. Konobeyev, Sébastien Lemaire, Stefano Panebianco
Nuclear Science and Engineering | Volume 169 | Number 2 | October 2011 | Pages 178-187
Technical Paper | doi.org/10.13182/NSE10-53
Articles are hosted by Taylor and Francis Online.
The MEGAwatt PIlot Experiment (MEGAPIE) project was started in 2000 to design, build, and operate a liquid lead-bismuth eutectic (LBE) spallation neutron target at the power level of 1 MW. The target was irradiated for 4 months in 2006 at the Paul Scherrer Institute in Switzerland. Gas samples were extracted in various phases of operation and analyzed by spectroscopy, leading to the determination of the main radioactive isotopes released from the LBE. Comparison with calculations performed using several validated codes (MCNPX2.5.0/CINDER'90, FLUKA/ORIHET, and SNT) yields the ratio between simulated in-target isotope production rates and experimental amounts released at any given time. This work underlines the weak points of spallation models for some released isotopes. Also, results provide relevant information for safety and radioprotection in an accelerator-driven system and more particularly for the gas management in a spallation target dedicated to neutron production facilities.