ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
L. C. Ingesson, B. Alper, B. J. Peterson, J.-C. Vallet
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 528-576
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST53-528
Articles are hosted by Taylor and Francis Online.
This chapter reviews multichannel broadband measurement of the soft-X-ray radiation and total radiation in magnetically confined fusion plasma experiments. Common detector types used (including bolometers), details of their application, and interpretation of their measurements are described. An introduction is given to the application of computed tomography methods in the mathematical reconstruction of emission profiles from multiple (approximately) line-integral measurements, taking into account the specific circumstances common in magnetically confined fusion plasma experiments. Although the emphasis is on two-dimensional tomography of poloidal cross sections, the applications of Abel inversion, three-dimensional tomography, vector tomography, and other specific methods are briefly discussed. Several examples of the application and the plasma parameters that can be derived are given.