ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
L. C. Ingesson, B. Alper, B. J. Peterson, J.-C. Vallet
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 528-576
Technical Paper | Plasma Diagnostics for Magnetic Fusion Research | doi.org/10.13182/FST53-528
Articles are hosted by Taylor and Francis Online.
This chapter reviews multichannel broadband measurement of the soft-X-ray radiation and total radiation in magnetically confined fusion plasma experiments. Common detector types used (including bolometers), details of their application, and interpretation of their measurements are described. An introduction is given to the application of computed tomography methods in the mathematical reconstruction of emission profiles from multiple (approximately) line-integral measurements, taking into account the specific circumstances common in magnetically confined fusion plasma experiments. Although the emphasis is on two-dimensional tomography of poloidal cross sections, the applications of Abel inversion, three-dimensional tomography, vector tomography, and other specific methods are briefly discussed. Several examples of the application and the plasma parameters that can be derived are given.