ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L. Wu, H. Momota, G. H. Miley
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1056-1060
Technical Paper | Plasma Engineering and Diagnostics | doi.org/10.13182/FST07-A1635
Articles are hosted by Taylor and Francis Online.
Interactions of charge exchange and ionization of fast, low-charged heavy ions are very important in heavy ion beam inertial confinement fusion. These effects are crucial indetermination of the final focusing in the chamber. However, corresponding cross section data is very limited and/or not accurate over the entire range of energies and ions of interest. This paper reports on our recent studies of cross sections for interactions of heavy ions with noble gases. Since a quantum mechanical treatment encounters a complex many-body problem, a classical trajectory Monte Carlo method is employed. The distribution of inner electrons is estimated by a modified Hartree-Fock model for the purpose of decreasing the number of electron orbits calculated, a micro-canonical ensemble for the initial electron probability distribution is introduced to describe quantum mechanical uncertainty. Cross sections are evaluated over a limited energy range; then scaling laws are developed to reflect the change probability for the beam charge state over a larger energy range.