ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
If the nucleus of a heavy atom–such as uranium–absorbs a neutron, the nucleus can become unstable and split. This is called nuclear fission. Fission releases energy in the form of heat. Although fission can occur naturally, fission as encountered in the modern world is usually a deliberate man-made nuclear reaction.
Typical fission events release about two hundred million eV (200 MeV) of energy. In contrast, most chemical oxidation reactions (such as burning coal) release at most a few eV per event. So, nuclear fuel contains at least ten million times more usable energy per unit mass than does chemical fuel.
Fusion is the opposite reaction of fission. In fusion, atoms are fused together.For a fusion reaction to occur, it is necessary to bring two nuclei so close that nuclear forces become active and glue the nuclei together. Deuterium and Tritium, isotopes of hydrogen, are used in fusion reactors. Nuclear forces are small-distance forces and have to act against the electrostatic forces where positively charged nuclei repel each other. This is the reason nuclear fusion reactions occur mostly in high density, high temperature environment.
Recreating that environment is the greatest challenge to producing commercial scale fusion energy, but it’s a challenge well worth pursuing. Nuclear fusion can produce four times the amount of energy as nuclear fission.
Last modified July 14, 2022, 1:53pm CDT