ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
If the nucleus of a heavy atom–such as uranium–absorbs a neutron, the nucleus can become unstable and split. This is called nuclear fission. Fission releases energy in the form of heat. Although fission can occur naturally, fission as encountered in the modern world is usually a deliberate man-made nuclear reaction.
Typical fission events release about two hundred million eV (200 MeV) of energy. In contrast, most chemical oxidation reactions (such as burning coal) release at most a few eV per event. So, nuclear fuel contains at least ten million times more usable energy per unit mass than does chemical fuel.
Fusion is the opposite reaction of fission. In fusion, atoms are fused together.For a fusion reaction to occur, it is necessary to bring two nuclei so close that nuclear forces become active and glue the nuclei together. Deuterium and Tritium, isotopes of hydrogen, are used in fusion reactors. Nuclear forces are small-distance forces and have to act against the electrostatic forces where positively charged nuclei repel each other. This is the reason nuclear fusion reactions occur mostly in high density, high temperature environment.
Recreating that environment is the greatest challenge to producing commercial scale fusion energy, but it’s a challenge well worth pursuing. Nuclear fusion can produce four times the amount of energy as nuclear fission.
Last modified July 14, 2022, 1:53pm CDT