ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Experts talk on developing the isotope supply chain
The American Nuclear Society recently hosted a webinar, “Securing the Isotope Supply Chain: A Growing Global Challenge,” featuring experts from a variety of private and public institutions who discussed the current state of the isotope supply chain, the necessity for strengthening that chain, and the tools available to develop a more robust system.
To watch the full webinar, click here.
Richard R. Hobbins, David A. Petti, Donald L. Hagrman
Nuclear Technology | Volume 101 | Number 3 | March 1993 | Pages 270-281
Technical Paper | Severe Accident Technology / Nuclear Reactor Safety | doi.org/10.13182/NT93-A34790
Articles are hosted by Taylor and Francis Online.
Recent advances in the understanding of fission product release from fuel under severe accident conditions in light water reactors are reviewed. In addition to the effects of temperature and time at temperature, recent results from in-pile and out-of-pile tests and the accident at Three Mile Island Unit 2 suggest that the effects of fuel morphology such as restructuring of the UO2 microstructure, fuel liquefaction, molten pool formation, debris bed formation, and the effect of fuel chemistry have important influences on fission product release behavior under severe accident conditions. Consideration of these effects is required for complete models of fission product release during severe light water reactor accidents.