ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Günter Fieg, Manfred Möschke, Heinrich Werle
Nuclear Technology | Volume 99 | Number 3 | September 1992 | Pages 309-317
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34715
Articles are hosted by Taylor and Francis Online.
The potential for recriticalities and high energetics during the transition phase of a hypothetical coredisruptive accident in a liquid-metal fast breeder reactor is strongly dependent on the fissile fuel inventory remaining in the core region. To investigate the ability of the fuel to penetrate unblocked flow paths, a series of experiments with pin bundle geometry has been performed at the THEFIS facility using alumina and alumina-iron melts as fuel simulants. Several series of similar experiments were done previously with tubes, annuli, and three-pin bundles using alumina, iron, and mixtures of alumina and iron melts. In this new series, seven-pin bundles with wire wrappers and grid spacers defining the cooling channels between the single pins have been investigated. These bundles are a more realistic representation of the upper blanket structure. These out-of-pile experiments have been analyzed with the PLUGM code, which is based on the assumption of stable crust growth during the penetration and freezing process. The differences in results between out-ofpile experiments using alumina and those using UO2 are discussed, and an explanation for these discrepancies is indicated.