ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yoshiyuki Inagaki, Kazuhiko Kunitomi, Yoshiaki Miyamoto, Ikuo Ioka, Kunihiko Suzuki
Nuclear Technology | Volume 99 | Number 1 | July 1992 | Pages 90-103
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34706
Articles are hosted by Taylor and Francis Online.
The high-temperature engineering test reactor (HTTR) is a 30-MW(thermal) helium gas-cooled reactor being constructed by the Japan Atomic Energy Research Establishment. A thermal mixing study of the coolant in the core bottom structure (CBS) of the HTTR is conducted to clarify the thermal-hydraulic characteristics of the coolant and estimate the influence of a hot streak on the intermediate heat exchanger (IHX) and a pressurized water cooler (PWC) downstream from the core. An experiment is carried out using an in-core structure test section (a full-scale simulation model of the CBS) of the helium engineering demonstration loop (HENDEL), and a numerical analysis is made using a three-dimensional time-dependent flow and heat transfer code including a k-ε model of turbulence. It is confirmed that the coolant is mixed sufficiently in the CBS and the outlet gas duct of the HTTR, and the hot streak had little effect on the IHX and the PWC.