ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Eric B. Bartlett, Robert E. Uhrig
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 272-281
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34635
Articles are hosted by Taylor and Francis Online.
In this work, nuclear power plant operating status recognition is investigated using a self-optimizing stochastic learning algorithm artificial neural network (ANN) with dynamic node architecture learning. The objective is to train the ANN to classify selected nuclear power plant accident conditions and assess the potential for future success in this area. The network is trained on normal operating conditions as well as on potentially unsafe conditions based on nuclear power plant training simulator-generated accident scenarios. These scenarios include hot- and cold-leg loss of coolant, control rod ejection, total loss of off-site power, main steamline break, main feedwater line break, and steam generator tube leak accidents as well as the normal operating condition. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results. Continued research work is indicated.