ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Otto Demel
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 298-302
Technical Paper | Material | doi.org/10.13182/NT80-A32476
Articles are hosted by Taylor and Francis Online.
A ternary 15 Cr—35 Ni—50 Fe alloy and three versions of the same base doped with niobium, titanium, or molybdenum were exposed in the temperature range from 700 to 1000°C to simulated high temperature reactor helium in two corrosion experiments that differed mainly in moisture content at the High Temperature Materials Programme in Wimborne, United Kingdom. The water level in Run B was about ten times higher than in the dryer Run A. As expected, oxides that formed during exposure in the oxidizing atmosphere of Run B were generally thicker. Thickness and structural appearance of the oxides varied between the four alloys in both runs. In electron probe microanalysis studies the oxides were found to be virtually pure chromium oxides containing no significant amounts of the additives. It is inferred that variations in thickness and structural appearance of the oxides are caused by differences in kinetics of chromium oxidation, depending on the additives.