ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. M. H. Ragheb, R. T. Santoro, J. M. Barnes, M. J. Saltmarsh
Nuclear Technology | Volume 48 | Number 3 | May 1980 | Pages 216-232
Technical Paper | Reactor | doi.org/10.13182/NT80-A32469
Articles are hosted by Taylor and Francis Online.
The nuclear performance of a fusion-fission hybrid reactor having a molten salt composed of Na-Th-F-Be as the blanket fertile material and operating with a catalyzed deuterium-deuterium (DD) plasma is compared to a similar system utilizing a Li-Th-F-Be salt and operating with a deuterium-tritium (DT) plasma. The production of fissile fuel via the 232Th-233U fuel cycle was considered on the basis of its potential nonproliferation aspects. The calculations were performed using one-dimensional discrete-ordinates methods to compare neutron balances, fuel production rates, energy deposition rates, and the radiation damage in the reactor structure. The results indicate that the sodium salt in conjunction with the catalyzed DD plasma represents a viable alternative to the lithium salt and DT plasma. In a reactor consisting of a 42-cm-thick salt compartment followed by a 40-cm-thick graphite reflector, the sodium-salt-catalyzed-DD system exhibits a higher fissile nuclide production potential via Th(n,γ) reactions (0.880 reaction/source neutron) than the lithium-salt-DT system (0.737 reaction/source neutron) without the additional complication of tritium production in the blanket. Energy and material balances for driven fusion systems show that the DT and catalyzed DD options have comparable performances in terms of their capability to support fission reactor satellites with their fissile fuel needs.