ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Chien C. Lin
Nuclear Technology | Volume 130 | Number 1 | April 2000 | Pages 59-70
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT00-A3077
Articles are hosted by Taylor and Francis Online.
Modification of coolant chemistry by feedwater hydrogen addition in boiling water reactors (BWRs), generally called hydrogen water chemistry (HWC), is a viable option to mitigate the intergranular stress corrosion cracking problems for operating BWRs. Some fundamentals in HWC technologies as known today are reviewed. Several full-scale HWC test results are analyzed, and the roles that hydrogen plays in HWC technology are identified and quantitatively evaluated. Some deficiencies in water radiolysis modeling for BWR applications under HWC conditions and the impact of 16N radiation field increase in the main steam line are also discussed.