ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Yeon Soo Kim
Nuclear Technology | Volume 130 | Number 1 | April 2000 | Pages 9-17
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT00-A3073
Articles are hosted by Taylor and Francis Online.
The literature dealing with fission gas release from UO2+x is reviewed. A simplified semiempirical model predicting fission gas release from UO2+x fuel to the fuel rod plenum as a function of stoichiometry excess x is developed to apply to the fuel of a defective light water reactor fuel rod in operation. An effective diffusion coefficient including a parabolic dependence of x is obtained based on existing data in the literature. The new diffusion coefficient is a composite expression of intrinsic, fission-enhanced, and nonstoichiometry-induced diffusion. The effective diffusion coefficient is incorporated into the Booth model to assess the time-dependent fractional fission gas release. The new model predictions are compared with existing data.