ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Robert W. Carlsen, Paul P. H. Wilson
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 288-300
Technical Paper | doi.org/10.13182/NT15-138
Articles are hosted by Taylor and Francis Online.
Because of the diversity of fuel cycle simulator modeling assumptions, direct comparison and benchmarking can be difficult. In 2012 the Organisation for Economic Co-operation and Development completed a benchmark study that is perhaps the most complete published comparison performed. Despite this, various results from the simulators were often significantly different because of inconsistencies in modeling decisions involving reprocessing strategies, refueling behavior, reactor end-of-life handling, etc. This work identifies and quantifies the effects of selected modeling choices that may sometimes be taken for granted in the fuel cycle simulation domain. Four scenarios are compared using combinations of either fleet-based or individually modeled reactors with either monthly or quarterly (3-month) time steps. The scenarios approximate a transition from the current U.S. once-through light water reactor fleet to a full sodium fast reactor fuel cycle. The Cyclus fuel cycle simulator’s plug-in facility capability along with its market-like dynamic material routing allow it to be used as a level playing field for comparing the scenarios. When they are under supply-constraint pressure, the four cases exhibit noticeably different behavior. Fleet-based modeling is more efficient in supply-constrained environments at the expense of losing insight on issues such as realistically suboptimal fuel distribution and challenges in reactor refueling cycle staggering. Finer-grained time steps also enable more efficient material use in supply-constrained environments resulting in much lower standing inventories of separated Pu. Large simulations with fleet-based reactors run much more quickly than their individual reactor counterparts. Gaining a better understanding of how these and other modeling choices affect fuel cycle dynamics will enable making more deliberate decisions with respect to trade-offs such as computational investment versus realism.