ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ruixuan Han, Liucheng Liu, Rui Tu, Wei Xiao, Yingying Li, Huailin Li, Dan Shao
Nuclear Technology | Volume 195 | Number 2 | August 2016 | Pages 192-203
Technical Paper | doi.org/10.13182/NT15-109
Articles are hosted by Taylor and Francis Online.
Iodine atom interstitial configurations and diffusion in bulk β-SiC and α-Zr are calculated using first-principles calculations and the nudged elastic band method. The formation energy of an I interstitial in bulk silicon carbide (SiC) is ten times higher than that of an I interstitial in bulk Zr. The I interstitial is very difficult to introduce into bulk SiC compared with the doping process in bulk Zr. The diffusion mechanisms of an I atom in SiC and Zr are exchange mechanisms. Iodine interstitial diffusion in bulk SiC is roughly an isotropic process along a path that is a series of combinations of ISi → Ic and Ic → ISi, with a diffusion barrier of 1.20 eV and an attempt-to-diffuse frequency Γ0 25.12 THz. Meanwhile, I interstitial diffusion in bulk Zr is an anisotropic process. An I interstitial atom diffuses mainly between two Zr atom [0001] layers along a zigzag path with a diffusion barrier of 0.16 eV and an attempt-to-diffuse frequency Γ0 = 2.88 THz. In general, the diffusion rate of an I interstitial in bulk SiC is lower than that in bulk Zr in the temperature range from 290 to 3000 K. The defect effect on I diffusion is an interesting topic for future study.