ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Erich A. Schneider, Charles G. Bathke, Michael R. James
Nuclear Technology | Volume 151 | Number 1 | July 2005 | Pages 35-50
Technical Paper | Advances in Nuclear Fuel Management - Core Physics and Fuel Management Methods, Analytical Tools, and Benchmarks | doi.org/10.13182/NT05-4
Articles are hosted by Taylor and Francis Online.
NFCSim is an event-driven, time-dependent simulation code modeling the flow of materials through the nuclear fuel cycle. NFCSim tracks mass flow at the level of discrete reactor fuel charges/discharges and logs the history of nuclear material as it progresses through a detailed series of processes and facilities, generating life-cycle material balances for any number of reactors. NFCSim is an ideal tool for analysis - of the economics, sustainability, or proliferation resistance - of nonequilibrium, interacting, or evolving reactor fleets. The software couples with a criticality and burnup engine, LACE (Los Alamos Criticality Engine). LACE implements a piecewise-linear, reactor-specific reactivity model for its criticality calculations. This model constructs fluence-dependent reactivity traces for any facility; it is designed to address nuclear economies in which either a steady state is never obtained or is a poor approximation. LACE operates in transient and equilibrium fuel management regimes at the refueling batch level, derives reactor- and cycle-dependent initial fuel compositions, and invokes ORIGEN2.x to carry out burnup calculations.