ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Rodolfo Vaghetto, Yassin A. Hassan
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 282-293
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-130
Articles are hosted by Taylor and Francis Online.
The Very High Temperature Gas-Cooled Reactor (VHTR) is one of the next-generation nuclear reactors designed to achieve high temperatures to support industrial applications and power generation. Because of the high temperature reached during normal operation, new safety features were added to its design. The reactor cavity cooling system (RCCS) is a passive safety system that will be incorporated in the VTHR. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady state) and accident scenarios. A small-scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the thermal-hydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates. A steady-state experimental run was conducted to study the behavior of the coolant under this condition. The experimental results obtained confirmed the capabilities of the system in removing the heat from the cavity and helped in identifying phenomena that may occur in this type of passive system.