Safety analyses of a proliferation-resistant, economically competitive, high-conversion boiling water reactor (HCBWR) fueled with fissile plutonium and fertile thorium oxide fuel elements, and with passive safety systems, are presented here. The HCBWR developed here is characterized by a very tight lattice with a relatively small water volume fraction in the core that therefore operates with a fast reactor neutron spectrum and a considerably improved neutron economy compared to the current generation of light water reactors. The tight lattice core has a very narrow flow channel with a hydraulic diameter less than half of the regular boiling water reactor (BWR) core and, thus, presents a special challenge to core cooling because of reduced water inventory and high friction in the core. The primary safety concern when reducing the moderator-to-fuel ratio and when using a tightly packed lattice arrangement is to maintain adequate cooling of the core during both normal operation and accident scenarios.

In the preliminary HCBWR design, the core is placed in a vessel with a large chimney section, and the vessel is connected to the isolation condenser system (ICS). The vessel is placed in containment with the gravity driven cooling system (GDCS) and passive containment cooling system (PCCS) in a configuration similar to General Electric's simplified BWR (SBWR). The safety systems are similar to those of the SBWR; the ICS and PCCS are scaled with power. An internal recirculation pump is placed in the downcomer to augment the buoyancy head provided by the chimney since the buoyancy provided by the chimney alone could not generate sufficient recirculation in the vessel as the tight lattice configuration results in much larger friction in the core than with the SBWR.

The constitutive relationships for RELAP5 are assessed for narrow channels, and as a result the heat transfer package is modified. The modified RELAP5 is used to simulate and analyze two of the most limiting events for a tight pitch lattice core: the station blackout and the main-steam-line-break events. The results of the analyses indicate that the HCBWR system will be safely brought to the shutdown condition for these transients.