ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
Hwanyeal Yu, Seongdong Jang, Yonghee Kim
Nuclear Science and Engineering | Volume 195 | Number 7 | July 2021 | Pages 766-777
Technical Paper | doi.org/10.1080/00295639.2020.1867435
Articles are hosted by Taylor and Francis Online.
Based on embedded analysis, an accurate pin power reconstruction (PPR) method is proposed for conventional nodal analysis. Unlike the common form function (FF) method, the new PPR method, named the embedded pin power reconstruction (EPPR) method, directly solves a two-group fixed-source problem that is defined with pinwise homogenized group constants (HGCs) and coarse-mesh incoming partial currents on the boundary. In the EPPR scheme, the pinwise HGCs including the pinwise discontinuity factor are predetermined from single-assembly lattice calculations, and the boundary partial currents are obtained from two-step nodal analyses. Two EPPR approaches are proposed: One is a 3×3 extended color-set configuration, and the other is a smaller one considering the half-thickness of the surrounding fuel assemblies. The performance of the EPPR methods is evaluated with various benchmark problems including partially mixed oxide–loaded pressurized water reactor cores, and the results are compared with the conventional FF method. Comprehensive results of this work demonstrate that the new EPPR method can provide much better accuracy than the conventional FF-based PPR method.