ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Zhaopeng Zhong, Thomas J. Downar, Yunlin Xu, Mark L. Williams, Mark D. DeHart
Nuclear Science and Engineering | Volume 154 | Number 2 | October 2006 | Pages 190-201
Technical Paper | doi.org/10.13182/NSE06-3
Articles are hosted by Taylor and Francis Online.
A method is presented to obtain a continuous-energy representation of the neutron spectrum using two-dimensional discrete ordinates calculations with a combination of multigroup (MG) and pointwise (PW) nuclear data. This provides the capability of determining the fine-structure energy distribution of the angular flux and flux moments within the resonance range as well as the smoother spectrum in the high- and thermal-energy ranges. The continuous-energy flux spectra can be utilized as problem-dependent weighting functions within the whole two-dimensional domain to process self-shielded MG cross sections for reactor physics and/or criticality safety analysis so that the two-dimensional heterogeneous effect in the resonance calculation can be fully considered. This calculational method has been implemented in a new PW transport code called GEMINEWTRN that may be executed as a module in the SCALE computer code system. Example applications using ENDF/B cross-section data are presented to study the two-dimensional heterogeneous effect in the resonance calculations.