ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
V. Rajagopal
Nuclear Science and Engineering | Volume 12 | Number 2 | February 1962 | Pages 218-224
Technical Paper | doi.org/10.13182/NSE62-A26060
Articles are hosted by Taylor and Francis Online.
An experimental investigation has been made of the self-fluctuations in neutron density in a nuclear reactor, and the response in neutron density for random reactivity inputs, using analog correlation techniques. The analysis of self-fluctuations was based on ion chamber measurements of the fluctuations of neutron intensity at various points. Autocorrelation analysis was then used to find the power spectrum of the fluctuations, which has the shape of square modulus of transfer function. A random reactivity input was realized by using an electromechanical system to convert the white noise of a radioactive source into linear motion of a small neutron absorber. Analysis of the response was made by autocorrelating the reactivity input and cross-correlating the reactivity input and the response in neutron density, and determining their spectra. The amplitude and phase of the reactor transfer function were determined from these spectra. Results are presented on some measurements made on a small reactor at Brookhaven National Laboratory. The measured transfer function agrees with the calculated transfer function.