ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
N. C. FRANCIS, H. HURWITZ, JR., P. F. ZWEIFEL
Nuclear Science and Engineering | Volume 2 | Number 3 | May 1957 | Pages 253-287
Technical Paper | doi.org/10.13182/NSE57-A25395
Articles are hosted by Taylor and Francis Online.
The calculation of critical parameters, neutron distributions, and adjoint functions for reflected reactors is discussed. A variational technique and a modification of the Wiener-Hopf method are described. The major application is made for the case of reactors moderated by hydrogen, in which case the slowing-down kernel must be introduced either as a numerical function or as a polynomial fit to such a function. For the case of the polynomial fit, explicit formulas for critical size, neutron distributions, and adjoint functions have been found by the Wiener-Hopf method. A comparison with experimental results for water-moderated reactors shows discrepancies consistent with the discrepancy known to exist between the measured and calculated neutron age in water.