ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA nominees promise to support advanced reactor development
Four nominees to serve on the Tennessee Valley Authority Board of Directors told the Senate Environment and Public Works Committee that they support the build-out of new advanced nuclear reactors to meet the increased energy demand being shouldered by the country’s largest public utility.
Edward W. Larsen, J. E. Morel, John M. McGhee
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 328-342
Technical Paper | doi.org/10.13182/NSE123-328
Articles are hosted by Taylor and Francis Online.
The multigroup P1 and simplified PN (SPN) equations are derived by an asymptotic expansion of the multigroup transport equation with anisotropic scattering. The P1 equations are the leading-order approximation in this expansion; the SPN equations for N = 2,3,… are increasingly higher order approximations. The physical assumptions underlying these approximations are that the material system is optically thick, the probability of absorption is small, and the mean scattering angle is not close to unity. For multigroup isotropic scattering transport problems, a dispersion analysis is given that verifies the accuracy of the SPN approximations. Numerical comparisons of P1, SPN, and SN solutions are also given. These comparisons show that for low N, SPN solutions are significantly more accurate (transportlike) than P1 solutions and are obtained at a significantly lower computational cost than SN solutions.