ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Edward W. Larsen, J. E. Morel, John M. McGhee
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 328-342
Technical Paper | doi.org/10.13182/NSE123-328
Articles are hosted by Taylor and Francis Online.
The multigroup P1 and simplified PN (SPN) equations are derived by an asymptotic expansion of the multigroup transport equation with anisotropic scattering. The P1 equations are the leading-order approximation in this expansion; the SPN equations for N = 2,3,… are increasingly higher order approximations. The physical assumptions underlying these approximations are that the material system is optically thick, the probability of absorption is small, and the mean scattering angle is not close to unity. For multigroup isotropic scattering transport problems, a dispersion analysis is given that verifies the accuracy of the SPN approximations. Numerical comparisons of P1, SPN, and SN solutions are also given. These comparisons show that for low N, SPN solutions are significantly more accurate (transportlike) than P1 solutions and are obtained at a significantly lower computational cost than SN solutions.