ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
J. E. Morel, J. M. McGhee
Nuclear Science and Engineering | Volume 120 | Number 3 | July 1995 | Pages 147-164
Technical Paper | doi.org/10.13182/NSE95-A24116
Articles are hosted by Taylor and Francis Online.
A source iteration scheme and associated diffusion-synthetic acceleration scheme are defined for the even-parity Sn equations with anisotropic scattering. The spatially analytic versions of these schemes are shown to be completely equivalent to their counterparts for the first-order form of the equations. Thus, in the limit as the spatial mesh is refined, each even-parity iteration scheme must asymptotically converge at the same rate as its first-order counterpart. The equivalence of the even-parity and first-order source iteration processes implies that any synthetic acceleration scheme for the first-order Sn equations has an even-parity counterpart that is equivalent for the spatially analytic case. Theoretical and computational results are given that demonstrate the properties of the even-parity source iteration and diffusion-synthetic acceleration schemes.