ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Douglas S. Drumheller
Nuclear Science and Engineering | Volume 72 | Number 3 | December 1979 | Pages 347-356
Technical Paper | doi.org/10.13182/NSE79-A20390
Articles are hosted by Taylor and Francis Online.
In many cases, the mixing of drops of hot liquid fuel with a more volatile coolant results in stable film boiling about the drops. At some later time, a disturbance can fragment the drops. This fragmentation increases the contact area between the liquids and results in a violent vaporization of the coolant. An understanding of this fragmentation mechanism is crucial to the prediction of the likelihood of violent fuel-coolant interactions. In this work, a fragmentation mechanism is proposed. It is shown how moderate pressure disturbances can cause the symmetrical collapse of a vapor film and allow the coolant to impact the drop. The impact is shown to be of sufficient strength to fragment the drop. This model quantitatively predicts the conditions necessary to lead to extensive fragmentation.