ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
U. Salmi, J. J. Wagschal, A. Yaari, Y. Yeivin
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 298-300
Technical Note | doi.org/10.13182/NSE83-A17799
Articles are hosted by Taylor and Francis Online.
Several widely used neutron transport codes approximate the fission-source matrix by accepting only a single fission-neutron spectrum, regardless of how this spectrum is selected. This approximation introduces a needless calculational error. To overcome this flaw the difference between the correct and the approximate fission source matrices should be added to the scattering matrix. This significantly reduces the calculational errors in integral parameters calculated in the k formulation of the stationary transport equation and eliminates these errors altogether when the integral parameters are calculated in the other formulations of the equation. A numerical example is provided to demonstrate these points. The reactivity k, the average neutron energy , and the ratio are calculated for a JEZEBEL-like assembly using the standard and the proposed procedures.