ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Nicolas Leclaire, Tatiana Ivanova, Eric Latang, Emmanuel Girault, Jean-François Thro
Nuclear Science and Engineering | Volume 161 | Number 2 | February 2009 | Pages 188-215
Technical Paper | doi.org/10.13182/NSE07-86
Articles are hosted by Taylor and Francis Online.
From 1998 to 2004, a series of critical experiments referred to as the fission product (FP) experimental program was performed at the Commissariat à l'Energie Atomique Valduc research facility. The experiments were designed by Institut de Radioprotection et de Sûretà NuclÃaire (IRSN) and funded by AREVA NC and IRSN within the French program supporting development of a technical basis for burnup credit validation. The experiments were performed with the following six key fission products encountered in solution either individually or as mixtures: 103Rh, 133Cs, natNd, 149Sm, 152Sm, and 155Gd. The program aimed at compensating for the lack of information on critical experiments involving FPs and at establishing a basis for FPs credit validation. One hundred forty-five critical experiments were performed, evaluated, and analyzed with the French CRISTAL criticality safety package and the American SCALE5.1 code system employing different cross-section libraries. The aim of the paper is to show the experimental data potential to improve the ability to perform validation of full burnup credit calculation. The paper describes three phases of the experimental program; the results of preliminary evaluation, the calculation, and the sensitivity/uncertainty study of the FP experiments used to validate the APOLLO2-MORET 4 route in the CRISTAL criticality package for burnup credit applications.