ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Creekstone Energy taps EnergySolutions to study nuclear-powered data center
Utah-based Creekstone Energy has signed a memorandum of understanding (MOU) with EnergySolutions to study the feasibility of building at least 2 gigawatts of advanced nuclear capacity to power a 25-acre data center Creekstone is planning in Delta, Utah.
Zbigniew Weiss
Nuclear Science and Engineering | Volume 48 | Number 3 | July 1972 | Pages 235-247
Technical Paper | doi.org/10.13182/NSE72-A22482
Articles are hosted by Taylor and Francis Online.
In one-dimensional systems which consist of N nodes, the two N response matrix equations for the partial currents through the node interfaces have been transformed into a set of N three-point equations with the total in-current per node as the new variable. The resulting coefficients which describe the coupling between neighboring nodes are expressed in terms of the reflection and transmission matrices of the invariant imbedding theory. These coupling coefficients can be compared with those of other nodal equations. In the case of slab geometry this has been illustrated by a direct comparison with the familiar finite difference formulation with the average flux per node as the dependent variable. Also the relation between the method presented here and the so-called rigorous finite difference equations has been established. The advantage of this method lies in the fact that the flexibility of the response matrix methods—which describe the nodes in terms of invariant imbedding concepts—has been condensed into the conventional three-point finite difference scheme, for which many well-established solution methods exist.