ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ander Gray, Andrew Davis, Edoardo Patelli
Fusion Science and Technology | Volume 77 | Number 7 | November 2021 | Pages 802-812
Technical Paper | doi.org/10.1080/15361055.2021.1895667
Articles are hosted by Taylor and Francis Online.
In this paper we perform nuclear data uncertain propagation with Total Monte Carlo, where the transport simulation is repeated for random evaluations of the data. The Oktavian Iron, Oktavian Nickel, and the Frascati Neutron Generator (FNG) neutron streaming SINBAD benchmarks were evaluated with OpenMC. Gaussian random deviates were drawn from the ENDF/B-VII.1 and TENDL-2017 libraries where the covariances were available. Uncertainty from multiple nuclides was propagated simultaneously assuming inter-nuclide independence. When the individual statistical uncertainty is negligible compared to the data uncertainty, then standard probability theory may be applied. If this is not the case and both need to be considered, we use Imprecise Probabilities (IP) to perform further analysis. We show how uncertain experimental data may be compared to uncertain simulation in the context of IP, and show how an uncertainty-based sensitivity analysis can be performed with IP.