ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. A. Flanagan
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1297-1300
Next-Generation Device | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A39947
Articles are hosted by Taylor and Francis Online.
One critical issue examined in the present phase of the International Tokamak Reactor (INTOR) has been an evaluation of the technical benefit of dividing up the design and component production tasks of all major advanced technologies among all participants. Two approaches were evaluated: (a) a “splitting” approach in which each country provides 1/4 of the components of each major system (e.g., 3 of 12 TF coils), (b) a “branching” approach in which each country provides all components of selected major systems (e.g., first country provides all TF coils, second country provides all torus sectors, etc.). Quantitative cost and schedule estimates were developed for each of the two approaches and compared to the cost and schedule of the entire device if it were produced only by one country. The results of the U.S. evaluation indicated that the ratio of total estimated cost to the “national” cost was 1.66 for “splitting” and 1.20 for “branching.” The cost per participant was 0.41 and 0.30, respectively. The increase in the construction schedule was estimated to be 2.6 years.