ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
R. E. Olson
Fusion Science and Technology | Volume 38 | Number 1 | July 2000 | Pages 6-10
Technical Paper | Thirteenth Target Fabrication Specialists’ Meeting | doi.org/10.13182/FST00-A36107
Articles are hosted by Taylor and Francis Online.
A cryogenic, β-layered NIF ignition capsule with a beryllium ablator that employs a BeO dopant (2% O) for opacity control is described. The design has an optimized yield of 12 MJ and uses a “reduced drive” hohlraum temperature pulse shape that peaks at ∼250 eV. Shock timing sensitivity calculations have been performed for this capsule design. Individual uncertainties of: 1) ∼200 ps in the timing of the foot pulse; 2) ∼5% in the x-ray flux of the foot pulse and first step; 3) ∼10% in the ablator EOS; or 4) ∼ 5 μm in the DT ice layer thickness each have a significant impact on thermonuclear yield. Combined uncertainties have greater impact than isolated, individual issues. For example, a combination of uncertainties of: 200 ps in the foot, 2 eV in the foot, and 5 μm in the DT thickness results in a calculation that produces only ∼1% of the original design yield. A second, more speculative, capsule concept utilizing a liquid DT ablator is also discussed. This design produces a 2 MJ yield in a 250 eV peak drive calculation.