ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
C. A. Ordonez, R. Carrera, W. D. Booth, M. E. Oakes
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1740-1744
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29593
Articles are hosted by Taylor and Francis Online.
Tritium retention at the wall is an important consideration for the operation of a fusion ignition experiment. In this paper, the fusion ignition experiment IGNITEX is considered and tritium implantation, retention, and removal from the first wall are investigated. For the analysis, a new implantation model is used. The implantation model incorporates analytical fits to detailed Monte Carlo calculations of the implantation profile. The Monte Carlo calculations include the effect of the surface floating potential on the ion distribution function at the plasma-surface interface. Tritium retention at the first wall is shown to increase with incident fluence until saturation occurs. The isotope-exchange process for use in tritium removal at the wall is studied.