ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
A.G. Heics, W.T. Shmayda, N.P. Kherani
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1686-1691
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29584
Articles are hosted by Taylor and Francis Online.
A zirconium cobalt bed has been designed with large conductance, low porosity filters and a large bed containment mass to improve the rate of hydriding. By ensuring that sufficient thermal ballast is available, the hydriding rate will be exponential thereby approaching the desired isothermal limit. Loading dependencies upon initial tank pressure and bed capacity at ambient temperature have been studied. Hydrided ZrCo powder was observed to spontaneously combust in air at ambient temperature after undergoing 12 hydriding/dehydriding cycles. ZrCo powder progressively fragments into submicronic fines with continued bed cycling up to 35 bed cycles. No permanent degradation in the rate of hydrogen loading onto ZrCo has been observed during 95 hydriding/dehydriding cycles.