ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
P.J. Maziasz, A.F. Rowcliffe, M.L. Grossbeck, G.E.C. Bell, E.E. Bloom, D.C. Lousteau, A. Hishinuma, T. Kondo, R.F. Mattas, D.L. Smith
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1571-1579
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29565
Articles are hosted by Taylor and Francis Online.
New data on radiation-induced hardening, low-temperature creep and potential susceptibility (sensitization) to aqueous corrosion have been obtained on various heats of austenitic stainless steel (including type 316) irradiated at 60–400°C to 7–13 dpa. The data were obtained from spectral-tailoring reactor experiments, whose radiation-damage parameters are similar to those in the proposed International Thermonuclear Experimental Reactor (ITER) first-wall (FW) and blanket design. Austenitic stainless steels were found to increase significantly in strength at 60–330°C, to have higher irradiation-creep rates at 60°C than at 200–400°C, and to show radiation-induced changes in electrochemical properties at 200–400°C. These data on several radiation-induced property changes suggest that type 316 steel may be an adequate material for the FW of ITER. However, there is definitely a need for new data on fracture-toughness and on fatigue behavior below 400°C, as well as more data on irradiation-creep and effects of irradiation on corrosion properties, to better define temperature and dose dependencies for more detailed design analyses. Cold-working should remain an optional as-fabricated condition for the FW of ITER. Many properties of SA and CW 316 become similar after irradiation at 60–400°C. The higher initial yield-strength of CW 316 will allow higher design stress and elastic strain limits.