ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
John A. Schmidt, D. Bruce Montgomery, the CIT Design Team
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 594-598
Overview | doi.org/10.13182/FST91-A29411
Articles are hosted by Taylor and Francis Online.
The Compact Ignition Tokamak (CIT) has been proposed for construction contiguous to the TFTR facility at Princeton Plasma Physics Laboratory. A national design team comprising U.S. fusion laboratories and industry has been organized to design the CIT tokamak. The mission of the CIT Project is to determine the physical behavior of self-heated fusion plasmas, and demonstrate the production of substantial amounts of fusion power. Compact, high-field tokamaks, such as CIT, are ideally suited to study burning plasmas. The basic characteristics of high-field, burning plasmas in general and the CIT device in particular, are high performance derived from high plasma current and high magnetic field, moderate pulse length (10 sec) and lower duty factor.